
1

User Manual of VIcaller v1.1

December 1, 2022

2

Citation: Xun Chen, Jason Kost, Arvis Sulovari, Nathalie Wong, Winnie S. Liang, Jian
Cao, and Dawei Li. A virome-wide clonal integration analysis platform for discovering
cancer viral etiology. Genome Research. 2019 May;29(5):819-830. PMID: 30872350.

Download: https://dllab.org/software/VIcaller.html

Copyright: VIcaller is licensed under the Creative Commons Attribution-
NonCommercial 4.0 International license. It may be used for non-commercial use only.
For inquiries about a commercial license, please contact the corresponding author at
lid@fau.edu.

3

1 Introduction
Viral Integration caller (VIcaller) is a bioinformatics tool designed for identifying viral
integration events using high-throughput sequencing (HTS) data. VIcaller is developed under
Linux platform. It uses both FASTQ files or aligned BAM files as input. It also supports both
single-end and paired-end reads. VIcaller contains one main Perl script, VIcaller.pl, that include
three main functions: 1) detect, which will detect virome-wide candidate viruses and integration
events; 2) validate, which will perform the in silico validation on those candidate viral
integrations; 3) calculate, which will calculate the integration allele fraction. We also generated
a comprehensive viral reference genome library with 411,195 unique whole and partial genomes,
covering all six virus taxonomic classes. The virome-wide reference library also comes with a
taxonomy database in a defined format that give virus name, and other information.

2 Availability
VIcaller is an open-source software. VIcaller.v1.1 source code is available at
www.uvm.edu/genomics/software/VIcaller. It includes the main Perl script and all other
dependent Perl scripts. The virome-wide reference library and the vector database are also
available at www.uvm.edu/genomics/software/VIcaller.

3 VIcaller installation
3.1 Unzip the VIcaller installer
Unzip the installer and change the directory

$ tar vxzf VIcaller.tar.gz
$ cd VIcaller/
$ mkdir Tools

3.2 Install the dependent Perl libraries and tools
a) Currently VIcaller relies on the following dependencies to be compiled (contact Dr. Xun Chen
if you need help get those tools or Perl libraries installed).
b) Obtain the installed file from the following links.
c) Follow the instruction to successfully install each tool (contact server manager if there is any
compile issues).
d) Check or install the listed Perl libraries using cpan, cpanm or other methods.

Install each of the listed tools

 BWA (default version: v0.7.10): https://github.com/lh3/bwa/tree/master/bwakit
 Bowtie2 (default version: v2.2.7): https://sourceforge.net/projects/bowtie-

bio/files/bowtie2/2.2.7/
 TopHat2 (v2.1.1): http://ccb.jhu.edu/software/tophat/index.shtml
 BLAT (default version: v.35): http://genomic-identity.wikidot.com/install-blat
 BLAST+ (default version: v2.2.30):

http://mirrors.vbi.vt.edu/mirrors/ftp.ncbi.nih.gov/blast/executables/blast%2B/2.2.30/
 SAMtools (default version: v1.6): https://sourceforge.net/projects/samtools/
 HYDRA (default version: 0.5.3): https://code.google.com/archive/p/hydra-sv/downloads
 NGS QC Toolkit (default version: v2.3.3): http://genomic-identity.wikidot.com/install-

blat

4

a) Copy the script “TrimmingReads_sanger.pl” under the VIcaller/Scripts/ folder to the
installed NGSQCToolkit_v2.3.3/Trimming/ folder

 FastUniq (Default version: v1.1): https://sourceforge.net/projects/fastuniq/
 SE-MEI (modified): https://github.com/dpryan79/SE-MEI (original version), the

modified version can be found under the VIcaller/Scripts/ folder
a) Copy the modified SE-MEI installer (SE-MEI-master.tar.gz) under the
VIcaller/Scripts/ folder to the VIcaller/Tools/ folder
b) Install the modified SE-MEI tool follow the README file

 RepeatMasker (default version: v4.0.5):
a) Install RepeatMasker: http://www.repeatmasker.org/
b) Install RMBlast aligner: http://www.repeatmasker.org/RMBlast.html
c) Compile the Repbase database: https://www.girinst.org/repbase/

 MEME (default version: v4.11.1):
http://web.mit.edu/meme_v4.11.4/share/doc/download.html

 TRF (default version: v4.07b): https://tandem.bu.edu/trf/trf.html

Install Perl libraries

$ cpan String::Approx
$ cpan Time::HiRes
$ cpan Test::Most
$ cpan Bio::Seq
$ cpan Bio::SeqIO
$ cpan Bio::DB::GenBank
$ cpan IO::Zlib

3.3 Prepare databases
Obtain and index the human reference genome using BWA, Bowtie2, and BLAST+
separately:

$ cd VIcaller/Database/Human/
$ wget http://hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/hg38.fa.gz
$ gunzip hg38.fa.gz
$ bwa index -a bwtsw hg38.fa
$ bowtie2-build hg38.fa hg38.fa
$ makeblastdb -in hg38.fa -dbtype nucl

Obtain and index the virome-wide library using BWA, Bowtie2, and BLAST+ separately:
a) Download the virus_db_090217.fa, virus_db_090217.taxonomy, virus_db_090217.virus_list
and Vector.fa files from the website: www.uvm.edu/genomics/software/VIcaller.html
b) Move the virus_db_090217.fa, virus_db_090217.taxonomy, and virus_db_090217.virus_list
files to the VIcaller/Database/Virus/ folder.
c) Move the Vector.fa to the VIcaller/Database/Vector/ folder.

Index the viral and vector database

$ cd VIcaller/Database/Virus/
$ bwa index -a bwtsw virus_db_090217.fa
$ bowtie2-build virus_db_090217.fa virus_db_090217.fa

5

$ makeblastdb -in virus_db_090217.fa -dbtype nucl
$ cd VIcaller/Database/Vector/
$ bwa index -a bwtsw Vector.fa

3.4 Prepare the VIcaller config file
3.4.1 Example of VIcaller.config

export PERL5LIB=/users/xchen/.cpan/build/
export PATH=$PATH:/users/xchen/VIcaller/Tools/bowtie2-2.2.7/
human_genome = /users/xchen/VIcaller/Database/Human/hg38.fa
human_genome_tophat = /users/xchen/VIcaller/Database/Human/hg38.fa
virus_genome = /users/xchen/VIcaller/Database/Virus/virus_db_090217.fa
virus_taxonomy = /users/xchen/VIcaller/Database/Virus/virus_db_090217.taxonomy
virus_list = /users/xchen/VIcaller/Database/Virus/virus_db_090217.virus_list
vector_db = /gpfs2/dli5lab/CAVirus/Database/Vector/Vector.fa
cell_line = /users/xchen/VIcaller/Database/cell_line.list
bowtie_d = /users/xchen/VIcaller/Tools/bowtie2-2.2.7/
tophat_d = /users/xchen/VIcaller/Tools/tophat-2.1.1.Linux_x86_64/
bwa_d = /users/xchen/VIcaller/Tools/bwa-master/
samtools_d = /users/xchen/VIcaller/Tools/samtools-1.6/
repeatmasker_d = /users/xchen/VIcaller/Tools/RepeatMasker/
meme_d = /users/xchen/VIcaller/Tools/meme_4.11.1/
NGSQCToolkit_d = /users/xchen/VIcaller/Tools/NGSQCToolkit_v2.3.3/
fastuniq_d = /users/xchen/VIcaller/Tools/FastUniq/
SE_MEI_d = /users/xchen/VIcaller/Tools/SE-MEI/
hydra_d = /users/xchen/VIcaller/Tools/Hydra-Version-0.5.3/
blat_d = /users/xchen/bin/x86_64/
blastn_d = /users/xchen/VIcaller/Tools/ncbi-blast-2.2.30+-src/

3.4.2 Check the generated VIcaller.config file

#. Make sure the space between “#” and parameters.
#. Make sure the directory for the Perl library is correct or the libraries are available in the
path if you install them locally.
#. Make sure the Bowtie2 directory is correct or it is available in the path (recommended) if
you are going to analyze RNA-seq data.
#. Make sure the human and virus databases existed and correctly indexed.

4 VIcaller command line

$ perl VIcaller.pl <functions> [arguments]

4.1 Detect candidate viral integrations
4.1.1 Command line
 $ perl VIcaller.pl detect [arguments]

4.1.2 Examples
a) WGS data in single-end fastq format:

$ perl VIcaller.pl detect -d WGS -i seq -f .fastq.gz -s single-end -t 12
b) RNA data in paired-end fastq format (set bowtie2 path before run the following command):

6

$ perl VIcaller.pl detect -d RNA-seq -i seq -f .fastq.gz -s paired-end -t 12
c) RNA alignment data in bam format (Note: Human reference genome should be the same as
the bam file)

$ perl VIcaller.pl detect -d RNA-seq -i seq -f .bam -s paired-end -t 12

4.1.3 Parameters

 -i|input_sampleID sample ID (required)
 -f|file_suffix the suffix of the input data, including: .fq.gz|fastq.gz,.fq|fastq

and .bam, indicate fastq and bam format separately default: .fq.gz
(required)

 -m|mode running mode, including: standard, fast (default: standard)
 -d|data_type data type, including: WGS, RNA-seq (default: WGS)
 -s|sequencing_type type of sequencing data, including: paired-end, single-end (default:

paired-end)
 -t|threads the number of threads will be used (default: 1)
 -r|repeat check repeat sequence
 -a|align_back_to_human reciprocal align back to the human reference genome
 -q|QS_cutoff quality score for each nucleotide
 -c|config user defined config file
 -b|build build version, including: hg19 and hg38 (default: hg38)
 -h|help print this help

4.2 Validate candidate viral integrations
4.2.1 Command line
 $ perl VIcaller.pl validate [arguments]

4.2.2 Example

$ perl VIcaller.pl validate -i seq -S seq_1_24020575_24020787_HPV16_218931404 -G
218931404 -V HPV16

4.2.3 Parameters

 -i|input_sampleID sample ID (required)
 -c|config user defined configure file
 -t|threads the number of threads will be used (default: 1)
 -S|String string with sample ID, integration region, candidate virus, GI (required)
 -G|GI GI (required)
 -V|Virus candidate virus (required)
 -h|help print this help

4.3 Calculate allele fraction
4.3.1 Command line
 $ perl VIcaller.pl calculate [arguments]

4.3.2 Example

$ perl VIcaller.pl calculate -i seq -f .fastq.gz -S -C 1 -P 24020575 -B 2 -N 20

7

4.3.3 Parameters

 -i|input_sampleID sample ID (required)
 -c|config user defined configure file
 -t|threads the number of threads will be used (default: 1)
 -F|File_suffix_bam the suffix of the input data, including: .fq.gz|fastq.gz,.fq|fastq and .bam,

indicate fastq and bam format, default: .fq.gz (required)
 -I|Index_sort if the input file is sorted BAM format
 -C|Chr chromosome ID (required)
 -P|Position integration site (required)
 -B|Breakpoint both or one of upstream and downstream breakpoints detected, including: 1, 2

(default: 2)
 -N|Number_reads number of chimeric and split reads
 -h|help print this help

5 Output
5.1 Output and file list
The candidate viral integrations detected by VIcaller are kept in the file with suffix of “.output”
in Viral integration Format (VIF), with the visualization of the aligned read sequences in the file
with suffix of “.visualization”. After in silico validation and allele fraction calculation, the results
are also kept in the output file. “seq” is an example sample ID.

Table 1 List of files produced by VIcaller
File name Content
seq_h.sam Alignment results in SAM format if the input is FASTQ

file
seq_h1_h.sam Secondary alignment in SAM format when the input is

BAM file
seq_pe.bam BAM file contained paired-end reads that both ends

cannot be aligned to the human reference genome
seq_sm.bam BAM file contained the end of chimeric reads that aligned

to the human reference genome
seq_su.bam BAM file contained the end of chimeric reads that not

aligned to the human reference genome
seq_1.1fq FASTQ file contained reads that only one end can be

aligned to the human reference genome (forward)
seq_2.1fq FASTQ file contained reads that only one end can be

aligned to the human reference genome (reverse)
seq_1sf.fastq FASTQ file contained soft-clipped sequences with ≥ 20

bp that were not aligned to the human reference genome
seq_1.1fuq FASTQ file contained potential chimeric reads (forward)
seq_2.1fuq FASTQ file contained potential chimeric reads (reverse)
seq_1sf.fuq FASTQ file contained potential split reads
seq_1sf.othu File contained soft-clipped sequences < 20 bp, that were

aligned to the human reference genome
seq.type File contained the read ID of all potential chimeric reads

8

seq.3 File contained records of both human and viral positions
per read

seq.error File contained records of both human and viral positions
per read that were removed

seq_f2 File contained the visualization of chimeric and split reads
of each candidate viral integration

seq_vsoft_sort.bam BAM file contained the alignment results of the soft-
clipped sequences against the viral reference genome
library

seq_vsu.sort.bam BAM file contained the alignment results of potential
chimeric reads against the viral reference genome library

seq.virus_f File contained the list of candidate viral integrations in
VIF format

seq.virus_f2 File contained the list of high confident candidate viral
integrations in VIF format

seq.visualization File contained the visualization of chimeric and split reads
of each high confident candidate viral integration

seq_1_24020575_24020787_hum
an_papillomavirus_type_2189314
04.CS3

File contained in silico results for each chimeric and split
reads

seq_1_24020701.allele_fraction File contained the integration allele fraction for each
candidate viral integration

seq.output Final output file containing the summary results of
each candidate viral integration

9

5.2 Header of the output file
Table 2 Header of the viral integration output file
Column Header Description
Col 1 Sample_ID Sample ID
Col 2 VIcaller_mode VIcaller running mode
Col 3 QC If low quality nucleotide and reads were filtered
Col 4 Reciprocal_alignment If the reads were reciprocal aligned back to the human reference genome
Col 5 Candidate_virus Virus name
Col 6 GI The selected, top one GenInfo Identifier (GI) for the integration
Col 7 Chr. Human chromosome ID
Col 8 Start Start position of the span genomic region of all chimeric and split reads in the

human reference genome
Col 9 End End position of the span genomic region of all chimeric and split reads in the

human reference genome
Col 10 No._chimeric_reads Total count of chimeric reads of the integration
Col 11 No._split_reads Total count of split reads of the integration
Col 12 Upstream_breakpoint_on_human Upstream breakpoint detected in the human reference genome
Col 13 Downstream_breakpoint_on_human Downstream breakpoint detected in the human reference genome
Col 14 Upstream_breakpoint_on_virus Upstream breakpoint detected in the viral genome
Col 15 Downstream_breakpoint_on_virus Downstream breakpoint detected in theviral genome
Col 16 Information_of_both_upstream_and

_downstream_breakpoints
Upstream and downstream breakpoint information. Upstream and downstream
breakpoints were separated by semicolon; "D" and "E" represent if this
breakpoint is detected by split reads (D), or estimated by chimeric reads
separately (E); "+" and "-", represent the forward and reverse direction for
both human (left) and virus (right) genome in the square per breakpoint; "na"
represent this breakpint is not covered by any chimeric and split reads

Col 17 Integration_site_in_the_human_genome Integration site in the human genome that was used for allele fraction
detection. If both upstream and downstream breakpoints were detected, the
medium position was used; If either one of the breakpoints were detected by
split reads, this postion detected by split reads was used

Col 18 Integration_allele_fraction Integration allele fraction value

10

Col 19 No._reads_supporting_nonVI No. reads support no viral integration
Col 20 No._reads_supporting_VI No. reads support viral integration, including chimeric and split reads
Col 21 Average alignment score Average alignment score (AS) of reads support viral integration, including

chimeric and split reads
Col 22 Is_cell_line_contamination Is the integration from cell line contamination
Col 23 Is_vector Is the integration from vector sequence
Col 24 Validation_chimeric_confident In silico validation, the number of chimeric reads were consistently validated

using BLASTN, BLAT and BWA-MEM
Col 25 Validation_chimeric_weak In silico validation, the number of chimeric reads were validated by some but

not all tools, including BLASTN, BLAT and BWA-MEM
Col 26 Validation_chimeric_false In silico validation, the number of chimeric reads were false after validation
Col 27 Validation_split_confident In silico validation, the number of split reads were consistently validated using

BLASTN, BLAT and BWA-MEM
Col 28 Validation_split_weak In silico validation, the number of split reads were validated by some but not

all tools, including BLASTN, BLAT and BWA-MEM
Col 29 Validation_split_false In silico validation, the number of split reads were false after validation

11

6 FAQ
6.1 Where can I get the human reference genome?
 The hg38 reference genome can be download from this link:
http://hgdownload.soe.ucsc.edu/goldenPath/hg38/bigZips/. It is recommended to use the latest
hg38.fa.gz file for indexing.

6.2 How to annotate the detected viral integrations?
 The following Linux command can be used to extract the information required to run
human genome functional annotation tools. The VIcaller output file is “seq.output”, and for
example, if the functional annotation software is SnpEff, the following command line will
extract the information required to run SnpEff. The output from using this command will be the
input file for SnpEff.

$ awk '{if ($7!="Chr.")print$7"\t"$17"\t.\tA\tT\t."}' seq.output >SnpEff.intput

6.3 What is the difference between “Fast” mode and “Standard” mode?
 “Fast” mode is significantly faster than “Standard” mode. However, the “Fast” mode does
not analyze viral reads, which are supporting evidence for distinguishing between viral
integrations and viral infections.

6.4 How to use the viral integration data from VIcaller for integration enrichment
analysis?
 VIcaller analyzes individual samples and then generates a list of viral integrations for each
sample. Viral integration enrichment (bias) analysis, which is a statistical analysis, requires
inclusion of a group of samples. The enrichment analysis has to be performed separately. There
are multiple statistical models for calculating/determining enrichment hotspots (such as
simulation-based Z score test). There are many available tools and R packages that can be
selected for enrichment analysis. Users may have different preferences on statistical models to fit
their actual samples/data.

6.5 Can I use the published tools that were designed for detecting transposable element
insertions to identify virome-wide integrations?
 VIcaller uses the reads that are commonly used in transposable element insertion and other
structural variation detection tools. However, because VIcaller is specifically designed to
identify virome-wide integrations, it has significant advantages for viral integration analysis over
alignment-based transposable element insertion detection tools for viral integration analysis,
which are designed to extract and mainly use (human’s) anomalous reads specifically. For
example, 1) VIcaller supports the use of a virome-wide library as the reference to detect any
characterized viruses, while most transposable element detection tools use transposable element
sequences as the reference; and 2) VIcaller implements viral integration-specific quality control
procedures and implements additional steps to in silico verify detected viral integrations. We
have tried to compare VIcaller with other transposable element insertion detection software, e.g.,
MELT. MELT failed to run in a virome-wide fashion after we replaced MELT’s default
consensus transposable element reference sequences with our virome-wide database. We further
tested whether MELT was able to detect simulated candidate viral integrations, and we found
that although MELT did run, it was not able to detect any of these integrations.

